DIFFERENTIAL GENE EXPRESSION ANALYSIS

Module 3: Alignment

GENERATE ALIGNMENTS USING HISAT2


```
cd /home/$USER/DGE_Virtual/raw_reads
# To run one single-end sample
hisat2 --help
hisat2 -x /home/$USER/DGE_Virtual/human_reference/hisat2_index/GRCh38.p12.genome \
-U 2S1Flag-p5-2.fq.gz \
--threads 6 \setminus
-S /home/$USER/DGE_Virtual/hisat2_alignments/2S1Flag-p5-2.sam
# -x: index filename prefix
# -p: threads
# -U: unpaired
# -S: SAM output
# The backslashes are just to escape the invisible newline character and continue a new line
# To run multiple samples at once using for loop on the command line:
for file in *.fq.gz; do hisat2 \setminus
-x /home/$USER/DGE_Virtual/human_reference/hisat2_index/GRCh38.p12.genome \
-U {file} \setminus
--threads 4 \setminus
-S /home/$USER/DGE_Virtual/hisat2_alignments/${file}.sam; done
#Detach from screen
Ctrl a+d (^a^d)
#Exercise: What flags will you use for paired-end reads?
hisat2 -x /path/to/GRCh38.p12.genome \
--threads 4 \setminus
-1 /path/to/read1.fastq \
-2 /path/to/read2.fastq \
```

```
-S /path/to/outputfile.sam
```

ALIGNMENTS FROM HISAT2 ARE REPRESENTED IN SAM (SEQUENCE ALIGNMENT MAP) FORMAT SAM ONLINE RESOURCES

Col	Field	Type	Regexp/Range	Brief description	
1	QNAME	String	[!-?A-~]{1,254}	Query template NAME	
2	FLAG	Int	$[0, 2^{16} - 1]$	bitwise FLAG	
3	RNAME	String	* [:rname:^*=][:rname:]*	Reference sequence NAME ¹¹	
4	POS	Int	$[0, 2^{31} - 1]$	1-based leftmost mapping POSition	
5	MAPQ	Int	$[0, 2^8 - 1]$	MAPping Quality	
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string	
7	RNEXT	String	* = [:rname:^*=][:rname:]*	Reference name of the mate/next read	
8	PNEXT	Int	$[0, 2^{31} - 1]$	Position of the mate/next read	
9	TLEN	Int	$[-2^{31}+1, 2^{31}-1]$	observed Template LENgth	
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence	
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33	

https://samtools.github.io/hts-specs/SAMv1.pdf http://www.htslib.org/doc/sam.html https://en.wikipedia.org/wiki/SAM_(file_format) ALIGNMENT METRICS Some alignment tools (HISAT2 for example) will print alignment metrics after generating alignments. However, these metrics may not be available as a result of other alignment tools. Hence, it is useful to know the following one-liners to extract information on important metrics from SAM files. cd /home/\$USER/DGE_Virtual/hisat2_alignments/ ls -ltr # Use the "rename" command to edit filenames # rename <FROM> <TO> <FILES TO RENAME> rename .fq.gz.sam .sam *.fq.gz.sam # Employ a function from the samtools environment to summarize statistics from a .sam file source activate samtools samtools flagstat 2S1Flag-p5-2.sam 14943130 + 0 in total (QC-passed reads + QC-failed reads) 3126633 + 0 secondary 0 + 0 supplementary 0 + 0 duplicates 14062988 + 0 mapped (94.11% : N/A) 0 + 0 paired in sequencing 0 + 0 read1 0 + 0 read2 0 + 0 properly paired (N/A : N/A) 0 + 0 with itself and mate mapped 0 + 0 singletons (N/A : N/A) 0 + 0 with mate mapped to a different chr 0 + 0 with mate mapped to a different chr (mapQ>=5) # The number in the first row is the count of records in the .sam file # Confirm this by counting the rows not including the header lines: grep -v "^@" 2S1Flag-p5-2.sam | wc -l 14943130 # Secondary alignments counts the alignments of reads that mapped to additional locations on the genome. # To omit these, Count the number of unique read IDs in the file: grep -v "^@" 2S1Flag-p5-2.sam | awk '{print \$1}' | uniq | wc -l 11816497 # Check this with arithmetic from the flagstat output: 14943454-3126957 # However, this count also includes reads which didn't map at all. Filter those out

("*" in column 3) to find the number of reads that mapped once or more.

cat 2S1Flag-p5-2.sam | grep -v '^@' | awk '{ if (\$3 != "*") print \$0}' \
| awk '{print \$1}' | uniq | wc -l
10936355

The mapped number from the flagstat output counts all alignments (not reads!)
Subtract the secondary reads from this value to check our result: 14063297-3126957

As it happens, there is another convenient samtools function to extract the desired metrics from # a .sam file:

samtools view -f 0x100 -c 2S1Flag-p5-2.sam

Including the "-f" option in the samtools "view" command will print to stdout the records # matching the corresponding bit flag shown in the table below.

This command, for example, counts (due to the inclusion of the "-c" option) all secondary reads # Notice it matches the number found with the other methods

The "-F" option is similar to grep's "-v" option; it pulls the OPPOSITE records from what the # bit flag describes. Moreover, these bit flags can be combined- e.g., 904 = 800 + 100 + 4 # Therefore, the number of primary alignments can also be found by:

samtools view -F 0x904 -c 2S1Flag-p5-2.sam

Bit		Description		
1	0x1	template having multiple segments in sequencing		
2	0x2	each segment properly aligned according to the aligner		
4	0x4	segment unmapped		
8	0x8	next segment in the template unmapped		
16	0x10	SEQ being reverse complemented		
32	0x20	SEQ of the next segment in the template being reverse complemented		
64	0x40	the first segment in the template		
128	0x80	the last segment in the template		
256	0x100	secondary alignment		
512	0x200	not passing filters, such as platform/vendor quality controls		
1024	0x400	PCR or optical duplicate		
2048	0x800	supplementary alignment		

EXERCISE: COMPLETE THE FOLLOWING TABLE

File Name	Total Number of Reads	Total Mapped Reads	Total Primary Alignments
2S1Flag-p5-2.fq.gz			
2S1Flag-p6-3.fq.gz			
2S1Flag-p7-2.fq.gz			
759_7-p5-2.fq.gz			
759_7-p6-1-1.fq.gz			
759_7-p6-2-2.fq.gz			
pCDNA_p6-3.fq.gz			
pCDNA_p7-2.fq.gz			
pCDNA_p8-3.fq.gz			
Scram_1-3.fq.gz			
Scram_1_p3-1.fq.gz			
Scram_1_p3-3.fq.gz			