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Benefits and limitations of
whole genome shotgun metagenomics
vs community analysis

What do you think?

National Center for Genome Resources



Benefits and limitations of whole genome metagenomics

Benefits

Fragmentation of genomes
into unordered sequence
segments

Computational automated
assembly of sequence
segments to construct

genome consensus

Integrative meta-omics

Strain-level profiling

Longitudinal study design

Capability of sequencing large regions or entire
genome

|dentification of organisms in addition to bacteria,
archaea

Increased prediction of genes and functional
pathways

Limitations

Expensive

Compute intensive

Incomplete databases

Biases in functional profiling
Unvalidated data in the public space

Live or dead dilemma v«m N C G R

National Center for Genome Resources



Sample Prep



Sample collection and DNA extraction

m Sample collection and preservation methods can affect

quality and accuracy of metagenomic data
Collect sufficient biomass
Minimize contamination
Enrichment methods where applicable

m DNA extraction methods can affect the composition of
downstream sequence data

m Method must be effective for diverse microbial taxa

Mechanical lysis (bead beating) method is considered superior,
however, data will be biased for easy-to-lyse microbes

Bead beating will result in short DNA fragments and lead to DNA
loss during library prep methods.



Sources of contamination

What do you think?



Sources of contamination

m Kit or lab reagents

m Low biomass samples are vulnerable to contamination as
there is less ‘real’ signal to compete with low levels of

contamination

Use ultraclean kits
Include blank sequencing controls

m Cross- over from previous sequencing runs
PhiX control DNA
Human/ host DNA



Include Controls

m Between run repeat (process any sample in duplicate per
run to measure reproducibility across runs)

m Within run repeat (process any sample in duplicate per
plate to measure reproducibility)

m Water used during PCR (water blank- to determine if any
contaminant was introduced during PCR reaction)

m Water spiked with known bacterial DNA (mock bacterial
communities- enables quantification of sequencing
errors, minimizes bias during sampling and library
preparation )



Sequencing



Coverage and Sequencing considerations

m No published guidelines for ‘correct’ amount of coverage
for a given environment

m Choose a system that maximizes output in order to recover
sequences from as many low-abundance members of the
microbiome as possible

m HiSeq 2500 or 4000, NextSeq and NovaSeq produce high volume
data (120Gb- 1.5 Tb per run) — suited for metagenomics study

m Multiplexing prudently will enable desired per-sample sequencing
depth



lllumina sequencers and yield

Production scale -

benchtop —

platform read config | ;1 oQUtPU4
HiSeq2500 | 2x250 |~ Gb-~1D
HiSeq 4000 2 x 150 1.5Th
HiSeq X 2 x 150 1.8 Tb
NovaSeq 2 x 250 6 Tb
NextSeq 2 x 150 120 Gb
MiSeq 2 x 300 15 Gb
Iseq 2x 150 1.2 Gb
MiniSeq 2 x 150 7.5 Gb




Long reads

PacBio
Increased throughput and lower cost
HiFi (>99% accuracy) versus CLR
Nanopore
Longer (up to 2 MB)

Recent improvements in accuracy



ProxiMeta (Hi-C) from Phase Genomics

Master the Microbiome

The ProxiMeta Metagenome Deconvolution Platform combines cost-effective proximity ligation data (generated with our optimized kits) with shotgun

sequencing data, to assemble high-quality metagenomes and associate mobile genetic elements with their hosts. Capture strain-resolution insights without
relying on 165-based techniques, binning or culturing.

Shotgun Assembly

Proximity ligation (Hi-C) libraries are generated from a single mixed microbial sample. Interactions are captured by crosslinking, digesting, and creating chimeric
junctions that are sequenced and analyzed with a shotgun assembly to deconvolve chromosomes and plasmids into complete genomes.
From: Stadler, T. et al. The ISME Journal 2019; 13: 2437 - 2446.



Data Preprocessing
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« Many tools/options to filter and trim data
« Trimming does not always improve things as valuable information
can be lost! ~
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« Removal of adapters is critical for downstream analysis -~
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https://www.bioinformatics.babraha
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https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Simplistic Workflow

Low quality trimming
rRNA removal
Dereplication

—

Gene activity diversity

Gene expression abundance
Differential gene expression
Biomarker discovery

—



Metatranscriptomics

165 rRNA gene

Human microbiome

profiling
(bacteria and archaea)

—

Clustering

Database mapping
to identify OTUs
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Computational and Structural Biotechnology Journal, 2015

“What are they doing?”
- Metatranscriptomics
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Benefits of Metatranscriptomics
vs community analysis or whole genome
metagenomics

What do you think?



Benefits of Metatranscriptomics

16S Sequencing

Metagenomic analysis

Metatranscriptome analysis

Identifies only a fraction of your gut
bacteria; unable to identify nonbacterial
microorganisms

cannot identify any RNA viruses or|
RNA bacteriophages

identifies all microorganisms living in the environment: bacteria,
viruses, archaea, yeast, fungi, parasites and bacteriophages

Low resolution (mostly genus or lower)

High resolution (species and strain
level), but does not include RNA
viruses

High resolution (species and strains) of all microorganisms

Unreliable; sequencing the same sample
twice can yield very different results

Minimal variation in results, but
partially biased analysis (no RNA
data)

Minimal variation in results and unbiased results

Does not measure microbe functions

Does not measure microbe
functions

capable of providing functional information

unable to identify microbial metabolites,
which are key for maintaining health

unable to identify microbial
metabolites, which are key for
maintaining health

identifies which metabolites are being produced and which are
missing

Sequences DNA, which can come from say
food or dead organisms

Sequences DNA, which can come
from say food or dead organisms

Sequences RNA, which comes from live microorganisms

low resolution and lack of functional data
preclude any. actionable recommendations
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low resolution and lack of
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American Gut Project

Earth microbiome Project

Human Oral Microbiome Database

CardioBiome

Human Microbiome Studies — JCVI

MetaSub — Metagenomics and metadesign of Subways and Urban Biomes
Gut microbiota for Health

NASA: Study of the impact of long term space travel in the Astronaut’s microbiome
Michigan microbiome project

Coral microbiome project

Seagrass microbiome project

Brazilian microbiome project

Home microbiome study



9,428 metagenomes Metagenomic assembly

- 32 countries, multiple lifestyles - Single-sample assembly

- 4 bodysites, all ages - Validation and strict QC

- 7 non-Westernized datasets - Clustering into species-level
(inc. newly added Madagascar) genome bins (SGBs)

154,723 microbial genomes from metagenomes

uSGB kSGB uSGB uSGB
New species without Known oral species New species associated New oral species associated
known isolates with non-Westernized lifestyles with Westernized lifestyles
; : N C G R
== == = Genome from a Westernized population Cell. 2019 S
sasnes Genome from a non-Westernized population ’ National Center for Genome Resources

— Available and annotated reference genome (usually from isclate sequencing)
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Example Workflow to plan a Metagenomics Study

Study
Design

Vil

Sample

nsure that sample CDIIectmn Cellect as much

“~__consistent
_consistent

E
[collection/ preservation
| procedures are

metadataas

Nature Biotechnology, 2017

Verify that

a high enough
biomass for

sequencing

' conditionsdo not
impact the resulting
' sequence data

Optimise DNA extraction
method to ensure it results |
in a representative species
. coverage

Experimental
Procedures

 samples contain

possible for each of
/ \.\the samples
V'

Ensure storage

_contamination

Include negative
controls to
menitor possible

Understanding the potential
for confounding factors, and
optimization of design, can
substantially improve the
quality of both
metagenomic sequence
data, and interpretation
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Shotgun Metagenomics

discovery

Microbiome-based
prediction tools

Subtype/
clustering analysis

Co-cccurrence/
ecological modeling

Phylageny
reconstruction

Strain tracking

Epidemiology and
population genomics

Assembly-based profiling
(Co)assenmble reads nlo conligs

v

Taxonomic and functional annotation

v

Map reads to annotated contigs

f—
Microbial species Read-based taxonomic profiling
S Map reads to genomes or marker ganes
m o g Reterence information
- _s
- Available microbal proteins,
genomes and annotations
Functions/pathways Annclated palhways
- Size: -GBs
Read-based metabolic profiling
, Map reads o annolated genes,
Size: ~-MBs: proteins or patiways
"'d:"":"“l {11, Experimental pipeline ) ( 2. Pre-processing | [ 3. Sequence analysis ) (4. Post-processing ) (5. Validation |

Nature Biotechnol, 2017

Metagenomics:
Untargeted sequencing of
all microbial genomes
present in a sample

Study design and experimental
protocol

Computational pre-processing
Sequence analysis
Post-processing

Validation
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Strengths and weaknesses of assembly-based and
read-based metagenomics analysis

What do you think?
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Strengths and weaknesses of assembly-based and
read-based metagenomics analysis

Comprehensiveness

Community
complexity

Novelty

Computational
burden

Genome-resolved
metabolism

Expert manual
supervision

Integration with
microbial genomics

Assembly-based analysis

Can construct multiple whole genomes, but only for
organisms with enough coverage to be assembled and
binned.

In complex communities, only a fraction of the genomes
can be resolved by assembly.

Can resolve genomes of entirely novel organisms with no
sequenced relatives.

Requires computationally costly assembly, mapping and
binning.

Can link metabolism to phylogeny through completely
assembled genomes, even for novel diversity.

Manual curation required for accurate binning and
scaffolding and for misassembly detection.

Assemblies can be fed into microbial genomic pipelines
designed for analysis of genomes from pure cultured
isolates.

Read-based analysis ('mapping’)

Can provide an aggregate picture of community function or structure, but is
based only on the fraction of reads that map effectively to reference databases.

Can deal with communities of arbitrary complexity given sufficient sequencing
depth and satisfactory reference database coverage

Cannot resolve organisms for which genomes of close relatives are unknown.

Can be performed efficiently, enabling large meta-analyses.

Can typically resoclve only the aggregate metabolism of the community, and
links with phylogeny are only possible in the context of known reference
genomes.

Usually does not require manual curation, but selection of reference genomes
to use could involve human supervision.

Obtained profiles cannot be directly put into the context of genomes derived
from pure cultured isolates.

Nature Biotechnol, 2017

N C G R
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Wet lab pipeline
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Clinical samples containing host and pathogen cells
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Pretreatment methods for metagenomics:

—

Microbial separation

Depletion of host nucleic acid
Targeted enrichment of pathogen DNA
after extraction

W N
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NGS and pathogen detection

Whole genome sequencing workflow

Cl
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DNA extraction from samples

. . i
Whole genome sequencing using next- gen Lo Nt
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3. Reference based SNP calling to perform phylogenetic
analysis to assist with epidemiological outbreak

N —

4. Resulting assembly used for typing and resistance Pathology, 2015
detection
5. Closed genome used for further analysis .
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Where we are headed!

Metatranscript
-~ omics

J

Metabolomics

3

Integrative network

Evolutionary Bioinf, 2016

Integrated networks for multi omics data v~"‘ N C G R
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Published studies

Whole genome metagenomic or metatranscriptomic?
What are the samples?

How many samples?

How many replicates?

What sequencing technologies?
How much sequencing coverage?
Sample complexity?

Community structure?

9. Assembly?

10. Functional?

11. Conclusions?
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